Bioabsorbable Scaffolds: The Next Holy Grail?

New Cardiovascular Horizons
New Orleans, LA
June 06, 2013

Lewis B. Schwartz, M.D., F.A.C.S.
Vascular Surgery and Endovascular Therapy
University of Chicago
Rationale for the Development of Bioresorbable Vascular Scaffolds

• Limitations of metallic stents
 – restenosis
 – stent thrombosis
 – chronic inflammation
 – imaging artifacts
 – jailed side branches
 – inhibition of positive remodeling (shear stress adaptation)
 – prevention of normal physiologic function such as vasomotion
 – need for prolonged anti-platelet therapy
 – permanent implant complicating repeat intervention

Adapted from Waksman R. Update on bioabsorbable stents: From bench to bedside. J Interven Cardiol 2006;19:414-421.
<table>
<thead>
<tr>
<th>Device</th>
<th>Study</th>
<th>Drug</th>
<th>Lesions</th>
<th>n</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igaki-Tamai FIM</td>
<td>Igaki-Tamai</td>
<td>none</td>
<td>coronary</td>
<td>50</td>
<td>18% restenosis @ 12-months 28% TLR @ 10-years</td>
</tr>
<tr>
<td>PROGRESS AMS</td>
<td>PROGRESS AMS</td>
<td>none</td>
<td>coronary</td>
<td>63</td>
<td>48% restenosis @ 12-months</td>
</tr>
<tr>
<td>BIOSOLVE-I</td>
<td>BIOSOLVE-I</td>
<td>paclitaxel</td>
<td>coronary</td>
<td>22</td>
<td>10% restenosis @ 6-months</td>
</tr>
<tr>
<td>BIOSOLVE-I</td>
<td>BIOSOLVE-I</td>
<td>none</td>
<td>coronary</td>
<td>24</td>
<td>in-scaffold LLL 0.52 mm @ 12-months</td>
</tr>
<tr>
<td>RESORB</td>
<td>RESORB</td>
<td>none</td>
<td>coronary</td>
<td>30</td>
<td>67% TLR @ 6-months</td>
</tr>
<tr>
<td>RESTORE I</td>
<td>RESTORE I</td>
<td>none</td>
<td>coronary</td>
<td>22</td>
<td>2 MACE @6-months</td>
</tr>
<tr>
<td>ABSORB Cohort A</td>
<td>ABSORB Cohort A</td>
<td>everolimus</td>
<td>coronary</td>
<td>30</td>
<td>12% restenosis @ 6-months</td>
</tr>
<tr>
<td>ABSORB Cohort B</td>
<td>ABSORB Cohort B</td>
<td>everolimus</td>
<td>coronary</td>
<td>45</td>
<td>2.4% restenosis @ 6-months</td>
</tr>
<tr>
<td>ABSORB Extend</td>
<td>ABSORB Extend</td>
<td></td>
<td></td>
<td>56</td>
<td>3.5% restenosis @ 12-months</td>
</tr>
<tr>
<td>DESolve I</td>
<td>DESolve I</td>
<td>novolimus</td>
<td>coronary</td>
<td>15</td>
<td>0% restenosis @6-months</td>
</tr>
</tbody>
</table>
Abbott Vascular Everolimus Eluting Bioresorbable Vascular Scaffold Components

<table>
<thead>
<tr>
<th>Scaffold</th>
<th>Coating</th>
<th>Drug</th>
<th>Delivery system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioresorbable</td>
<td>Bioresorbable</td>
<td>Everolimus</td>
<td>XIENCE V</td>
</tr>
<tr>
<td>• Poly(L-lactide) (PLLA)</td>
<td>• Poly(L,L-lactide) (PDLLA) coating</td>
<td>• Similar dose density and release rate to XIENCE V</td>
<td>• World-class deliverability</td>
</tr>
<tr>
<td>• Naturally resorbed, fully metabolized</td>
<td>• Naturally resorbed, fully metabolized</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photos taken by and on file at Abbott Vascular.
Representative photomicrographs of porcine coronary arteries, 2x

Absorb™ v. Cypher®

Photos taken by and on file at Abbott Vascular.

Tests performed by and data on file at Abbott Vascular.
Post-procedure

Pre-procedure

Diameter

Area

A

B

C

D

E

Dmin 2.63 mm
Dmax 3.05 mm
Dmean 2.83 mm
<table>
<thead>
<tr>
<th></th>
<th>26 lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-procedure</td>
<td></td>
</tr>
<tr>
<td>Lesion length (mm)</td>
<td>8.66</td>
</tr>
<tr>
<td>RVD (mm)</td>
<td>2.78</td>
</tr>
<tr>
<td>MLD (mm)</td>
<td>1.10</td>
</tr>
<tr>
<td>DS (%)</td>
<td>59%</td>
</tr>
<tr>
<td>Post-procedure</td>
<td></td>
</tr>
<tr>
<td>In-stent MLD (mm)</td>
<td>2.33</td>
</tr>
<tr>
<td>In-stent DS (%)</td>
<td>16%</td>
</tr>
<tr>
<td>In-stent acute gain (mm)</td>
<td>1.24</td>
</tr>
<tr>
<td>6-mos. follow-up</td>
<td></td>
</tr>
<tr>
<td>In-stent MLD (mm)</td>
<td>1.88</td>
</tr>
<tr>
<td>In-stent DS (%)</td>
<td>27%</td>
</tr>
<tr>
<td>In-stent late loss (mm)</td>
<td>0.44 ± 0.35</td>
</tr>
<tr>
<td>In-stent ABR (%)</td>
<td>11.5%</td>
</tr>
</tbody>
</table>
Comparison of DES - Late Lumen Loss

In-stent late loss (mm)
• Lower MCUSA (maximum unsupported scaffold area)
• More even support of arterial wall
• More uniform strut distribution
• Lower late stent area loss
• Improved stent retention
• Unchanged material and strut thickness

Radial Strength

Figure 5. Acute radial strength data for ABSORB Cohort B (3.0 x 18 mm), XIENCE V (3.0 x 18 mm), Cypher Select (3.0 x 18 mm), and Taxus Liberté (3.0 x 20 mm) \((n = 5\) for each set) obtained using the MSI RX550 radial expansion force gauge. Tests were performed by and data are on file at Abbott Vascular.

Ormiston J, Serruys PW. ABSORB Cohort B Trial – Two year clinical and angiographic results of the ABSORB everolimus eluting bioresorbable vascular scaffold (poster). Transcatheter Cardiovascular Therapeutics; 2011 November 8; San Francisco, CA.
Angiographic late lumen loss – two-year results

Ormiston J, Serruys PW. ABSORB Cohort B Trial – Two year clinical and angiographic results of the ABSORB everolimus eluting bioresorbable vascular scaffold (poster). Transcatheter Cardiovascular Therapeutics; 2011 November 8; San Francisco, CA.

Absorb™ v. XIENCE V® at 2-years

Graph:
- **ABSORB™ BVS(B1+B2)**
- **XV®(3.0 x 18mm subgroup, SPI+SPII+SPIII RCT)**

758-day HR
- 0.97 [0.42,2.21]
- p=0.9379

MACE (C-Death, MI, ID-TLR)

Time Post Index Procedure (Months)

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>37</th>
<th>194</th>
<th>284</th>
<th>393</th>
<th>573</th>
<th>758</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorb™</td>
<td>101</td>
<td>99</td>
<td>96</td>
<td>96</td>
<td>93</td>
<td>91</td>
<td>41</td>
</tr>
<tr>
<td>XIENCE V®</td>
<td>227</td>
<td>224</td>
<td>219</td>
<td>211</td>
<td>204</td>
<td>202</td>
<td>191</td>
</tr>
</tbody>
</table>

Rapoza R. Absorb BVS Program: Long-term experimental data angiography, IVUS, OCT, histology and micro CT. Local Drug Delivery and Cardiovascular Course on Revascularisation; 2012 February 4; Geneva, Switzerland. ABSORB and XIENCE V are trademarks of the Abbott Group of Companies.
QCA post procedure

Post procedure

Preprocedure

FUP before vasomotion

5 Min. After Methergine

After Nitro

MLD 2.45mm

Late Loss: -0.01mm

Minimal LD 1.58 mm
Mean LD 2.12 mm

Mean LD ∆-0.60mm (-22%)

Minimal LD 2.46 mm
Mean LD 2.72 mm

Mean LD ∆+0.55mm (+26%)

Minimal LD 2.32 mm
Mean LD 2.67 mm

Mean LD (∆-0.01mm)
Recovery of Vasoreactivity after Absorb Implantation

ABSORB Cohort B - Late Lumen Enlargement by IVUS

Ormiston J, Serruys PW. ABSORB Cohort B Trial – Two year clinical and angiographic results of the ABSORB everolimus eluting bioresorbable vascular scaffold (poster). Transcatheter Cardiovascular Therapeutics; 2011 November 8; San Francisco, CA.
Study Objective
Continued Access trial. FPI: Jan 11, 2010

Endpoints
Typical PCI clinical endpoints

Treatment
Up to 2 *de novo* lesions in different epicardial vessels
Planned overlapping allowed in lesions >22 and ≤ 28 mm

Device Sizes
Scaffold diameters: 2.5, 3.0, 3.5 mm
Scaffold lengths: 12*, 18, 28 mm

Bartorelli, A, An Interim Report on the 12-Month Clinical Outcomes from the First 250 Patients Registered, and An Interim Report on the 6-Month Clinical Outcomes from the First 500 Patients Registered, TCT 2012

Bartorelli, A. An Interim Report on the 12-Month Clinical Outcomes from the First 250 Patients Registered, and An Interim Report on the 6-Month Clinical Outcomes from the First 500 Patients Registered, TCT 2012

ABSORB III + IV Clinical Trial Program

ABSORB III

2,250 pts with up to 2 de novo lesions in different epicardial vessels enrolled, with follow-up for at least 5 years, at up to 122 US and non-US sites

2,000 pts randomized 2:1 ABSORB v XIENCE (+50 lead-in pts and 200 pt non-randomized angio/IVUS/OCT/VM FU cohort)

RVD: 2.50 - 3.75 mm; Lesion length: ≤24 mm

Scaffold diameters: 2.5, 3.0 and 3.5 mm
Scaffold lengths: 12, 18, and 28 mm

Primary endpoint (n=2,000):
TLF at 1 year (powered for noninferiority) – US approval

PIs: SG Ellis, DJ Kereiakes
Study chairman: GW Stone

TCT2012
The ABSORB Clinical Trials

• Use online QCA
• Avoid under sizing, as postdilation is limited to 0.5 mm
• Proper lesion preparation = sufficient large balloon (min 2.5 mm)
• Use more supportive wires
• Direct stenting possible in ACS

<table>
<thead>
<tr>
<th>Device</th>
<th>Company</th>
<th>Study</th>
<th>Drug</th>
<th>Lesions</th>
<th>n</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DREAMS AMS</td>
<td>Biotronik</td>
<td>BIOSOLVE I</td>
<td>paclitaxel</td>
<td>coronary</td>
<td>56</td>
<td>in-scaffold LLL 0.52 mm @12-months</td>
</tr>
<tr>
<td>ReZOLVE</td>
<td>Reva Medical, Inc.</td>
<td>RESTORE I</td>
<td>none</td>
<td>coronary</td>
<td>22</td>
<td>2 MACE @6-months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESTORE II</td>
<td>sirolimus</td>
<td>coronary</td>
<td>125</td>
<td>enrolling</td>
</tr>
<tr>
<td>ABSORB</td>
<td>Abbott</td>
<td>ABSORB EXTEND</td>
<td>everolimus</td>
<td>coronary</td>
<td>1000</td>
<td>enrolling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABSORB III</td>
<td></td>
<td></td>
<td>2000</td>
<td>enrolling</td>
</tr>
<tr>
<td>DESolve</td>
<td>Elixir Medical</td>
<td>DESolve I</td>
<td>novolimus</td>
<td>coronary</td>
<td>16</td>
<td>in-scaffold LLL 0.19 mm @6-months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DESolve Nx</td>
<td></td>
<td></td>
<td>126</td>
<td>enrolled</td>
</tr>
</tbody>
</table>
The Resorbable Holy Grail

- Restoration of normal vasomotion, with NO production
- Restoration of normal shear stress and cyclic strain
- Restoration of normal vessel curvature
- Reduced risk of very late polymer reactions
- Avoidance/resolution of positive remodeling and stent malapposition
- Avoidance/resolution of late strut fractures

- Less neoatherosclerosis
- Un-jailing of side-branches
- Plaque regression
- MRI/CT imaging follow-up
- The return of normal vessel architecture